Observation of a topological nodal-line semimetal in YbMnSb2 through optical spectroscopy

Abstract

The optical properties of YbMnSb2 have been measured in a broad frequency range from room temperature down to 7 K. With decreasing temperature, a flat region develops in the optical conductivity spectra at about 300 cm−1, which cannot be described by the well-known Drude-Lorentz model. A frequency-independent component has to be introduced to model the measured optical conductivity. Our first-principles calculations show that YbMnSb2 possesses a Dirac nodal line near the Fermi level. A comparison between the measured optical properties and calculated electronic band structures suggests that the frequency-independent optical conductivity component arises from interband transitions near the Dirac nodal line, thus demonstrating that YbMnSb2 is a Dirac nodal-line semimetal.

Publication
Physical Review B